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We describe CPMC-Lab, a Matlab program for the constrained-path and phaseless auxiliary-field
Monte Carlo methods. These methods have allowed applications ranging from the study of strongly
correlated models, such as the Hubbard model, to ab initio calculations in molecules and solids. The
present package implements the full ground-state constrained-path Monte Carlo (CPMC) method
in Matlab with a graphical interface, using the Hubbard model as an example. The package
can perform calculations in finite supercells in any dimensions, under periodic or twist boundary
conditions. Importance sampling and all other algorithmic details of a total energy calculation are
included and illustrated. This open-source tool allows users to experiment with various model and
run parameters and visualize the results. It provides a direct and interactive environment to learn
the method and study the code with minimal overhead for setup. Furthermore, the package can be
easily generalized for auxiliary-field quantum Monte Carlo (AFQMC) calculations in many other
models for correlated electron systems, and can serve as a template for developing a production code
for AFQMC total energy calculations in real materials. Several illustrative studies are carried out
in one- and two-dimensional lattices on total energy, kinetic energy, potential energy, and charge-
and spin-gaps.
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I. INTRODUCTION

The study of interacting quantum many-body sys-
tems remains an outstanding challenge, especially
systems with strong particle interactions, where per-
turbative approaches are often ineffective. Numer-
ical simulations provide a promising approach for
studying such systems. One of the most general nu-
merical approaches is quantum Monte Carlo (QMC)
methods based on auxiliary fields, which are applied
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in condensed matter physics, nuclear physics, high-
energy physics and quantum chemistry. These meth-
ods allow essentially exact calculations of ground-
state and finite-temperature equilibrium properties
of interacting many fermion systems.

As is well-known, however, these methods suffer
from the sign problem which severely limits their ap-
plicability. Considerable progress has been achieved
in circumventing this problem by constraining the
random walks while sampling the space of auxil-
iary fields [1]. Many applications of this method
involve lattices where there is a sign problem, for
example, Hubbard-like models where the local in-
teractions lead to auxiliary-fields that are real. In
these cases the method is known as Constrained
Path Monte Carlo (CPMC) [2, 3]. The method
can also be generalized to treat realistic electron-
electron interactions to allow for ab initio calcula-
tions on real materials [4, 5]. For these systems
there is a phase problem because the Coulomb in-
teraction leads to complex auxiliary fields. In such
systems, the method is referred to as phaseless or
phase-free auxiliary-field QMC (AFQMC). In both
cases (lattice and continuum), the idea behind the
method is to constrain the sign or phase of the over-
lap of the sampled Slater determinants with a trial
wave function. The constraint eliminates the sign or
phase instability and restores low power (typically to
the third power of system size) computational scal-
ing. Applications to systems ranging from lattice
models [6, 7] of correlated systems to solids [8, 9]
to atoms and molecules [10] have shown that these
methods are very accurate, even with simple trial
wave functions taken directly from Hartree-Fock or
density-functional calculations.

Since these methods combine standard mean-
field approaches with stochastic QMC, they pose
a formidable barrier to beginners. As such, it is
useful to have a pedagogical platform to learn the
methods and to aid further code development. In
this paper, we present a Matlab package that ful-
fills these roles. The package illustrates the CPMC
method for the Hubbard model, with a graphical in-
terface. The ground-state energy is calculated using
importance sampling and implementing the full al-
gorithmic details. With this open-source package,
calculations can be performed directly on Hubbard-
like models in any dimensions, under any boundary
conditions. It will be straightforward to generalize
the code for applications in many other models of
correlated electron systems. Furthermore, the code
contains the core QMC algorithmic ingredients for a
total energy AFQMC calculation. These ingredients
can be combined with standard electronic structure

machineries [11] (see, e.g., Refs [12] and [13]) to de-
velop a production code for AFQMC total energy
calculations in molecules and solids.

The tool presented here allows users to experi-
ment with various model and run parameters and
visualize the results. For this purpose Matlab of-
fers many advantages over traditional programing
languages such as FORTRAN or C. As an inter-
preted language, Matlab requires no compilation,
is platform-independent and allows easy interaction
with the algorithm during runtime. Matlab also
provides an array of tools to visualize results from
computations including a full graphical user inter-
face (GUI). These advantages make the package a
better choice for our purposes, as discussed above,
than regular “production” codes, despite a large dis-
crepancy in computational speed. We provide sev-
eral examples and include more questions in the ex-
ercises, which illustrate the usage of the code, key
algorithmic features, how to compute various prop-
erties in the Hubbard model, and how to generalize
it for other applications. As a pedagogical tool, the
package can be used in combination with the lecture
notes in Ref. [1] and references therein.

The remainder of the paper is organized as fol-
lows. In Section II we introduce the formalism and
various technical ingredients of the CPMC method,
and notations used in the rest of this paper. In Sec-
tion III the actual algorithm is outlined in detail.
An overview of the software package and instruc-
tions is given in Section IV, including a list of exer-
cises. In Section V, we briefly discuss the computa-
tional cost and comment on the relation between this
package and one written in a more conventional nu-
merical programming language. Then in Section VI,
we present several applications which illustrate al-
gorithmic issues; benchmark the method; discuss
CPMC calculations of the kinetic energy, potential
energy and double occupancy; and report several
new CPMC results on the spin- and charge-gaps.
We summarize in Section VII and include a list of
some useful Matlab commands in A.

II. METHOD AND NOTATION

The ground-state CPMC algorithm has two main
components: The first component is the formula-
tion of the ground state projection as an open-ended
importance-sampled random walk. This random
walk takes place in Slater determinant space rather
than configuration space like in Green’s function
Monte Carlo (GFMC) [14, 15]. There are two ways
to perform this random walk. Traditional projector
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QMC uses an exact unconstrained projection that
suffers from exponential scaling in computational
cost with increasing system size due to the sign
problem. In contrast, CPMC achieves polynomial
scaling by using an approximate constrained projec-
tion, which becomes exact if the trial wave function
(used to impose the constraint) is identical to the
ground state. Furthermore, importance sampling
makes CPMC a more efficient way to do projector
QMC in many cases. The second component is the
constraint of the paths of the random walk so that
any Slater determinant generated during the random
walk maintains an appropriate overlap with a known
trial wave function |ψT〉. This constraint eliminates
the sign decay, making the CPMC method scale al-
gebraically instead of exponentially, but introduces
a systematic error in the algorithm. These two com-
ponents are independent of each other, and can be
used separately. We call the combination of these
two components the ground-state CPMC algorithm.
This section only briefly reviews the application of
CPMC to the Hubbard model. The reader is re-
ferred to Refs. [1, 2] and references therein for a dis-
cussion of the Hubbard model implementation and
generalization of this theory to other, more realistic
Hamiltonians.

II.1. Slater determinant space

The CPMC method works with a chosen one-
particle basis. A Born-Oppenheimer Hamiltonian
with standard electronic interactions does not mix
the spins. We assume in the discussion below that
the Hamiltonian conserves total Ŝz, and that the
number of electrons with each spin component is
fixed. It is straightforward to treat a Hamiltonian
that does mix the spin species [16].

We will use the following notation:

• M : the number of single-electron basis states
i.e. the number of lattice sites in the Hubbard
model.

• |χi〉: the i-th single-particle basis state (i =
1, 2, . . . ,M).

• c†i and ci: creation and annihilation operators

for an electron in |χi〉. ni ≡ c†i ci is the corre-
sponding number operator.

• N : the number of electrons. Nσ is the num-
ber of electrons with spin σ (σ =↑ or ↓). As
expected, Nσ ≤M .

• ϕ: a single-particle orbital. The coefficients in

the expansion ϕ =
∑
i ϕi |χi〉 =

∑
i c
†
iϕi |0〉 in

the single particle basis {|χi〉} can be conve-
niently expressed as an M -dimensional vector:


ϕ1

ϕ2

...
ϕM

 (1)

• |φ〉: a many-body wave function which can
be written as a Slater determinant. Given
N different single-particle orbitals, we form
a many-body wave function from their anti-
symmetrized product:

|φ〉 ≡ ϕ̂†1ϕ̂
†
2 · · · ϕ̂

†
N |0〉 (2)

where the operator ϕ̂†m ≡
∑
i c
†
i ϕi,m creates

an electron in the m-th single-particle orbital
as described in Eq. (1).

• Φ: an M ×N matrix which represents the co-
efficients of the orbitals used to construct a
Slater determinant |φ〉:

Φ ≡


ϕ1,1 ϕ1,2 · · · ϕ1,N

ϕ2,1 ϕ2,2 · · · ϕ2,N

...
...

...
ϕM,1 ϕM,2 · · · ϕM,N

 (3)

Each column of this matrix is an M -
dimensional vector and represents a single-
particle orbital described by Eq. (1). For
brevity, we will subsequently refer to this M ×
N matrix as a Slater determinant.

• |Ψ〉 (upper case): a many-body wave function
which is not necessarily a single Slater deter-
minant, e.g. the many-body ground state |Ψ0〉.

We list several properties of a Slater determinant.
First, for any two non-orthogonal Slater determi-
nants, |φ〉 and |φ′〉, it can be shown that their overlap
integral is given by a number:

〈φ|φ′〉 = det
(
Φ†Φ′

)
, (4)

where Φ† is the conjugate transpose of the matrix
Φ.

Second, the operation on any Slater determinant
in Eq. (2) by the exponential of a one body operator

B̂ = exp

 M∑
ij

c†iUijcj

 (5)
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simply leads to another Slater determinant [17]:

B̂ |φ〉 = φ̂′ †1 φ̂
′ †
2 · · · φ̂

′ †
N |0〉 ≡ |φ

′〉 (6)

with φ̂′ †m =
∑
j c
†
j Φ′jm and Φ′ ≡ eUΦ, where the

matrix U is formed from elements Uij . Since B ≡ eU

is an M×M square matrix, the operation of B̂ on |φ〉
simply involves multiplying eU , an M ×M matrix,
to Φ, an M ×N matrix.

As mentioned above, operations on the spin-up
sector do not affect the spin-down sector and vice
versa. Thus it is convenient to represent each Slater
determinant as two independent spin parts:

|φ〉 = |φ↑〉 ⊗ |φ↓〉 (7)

The corresponding matrix representation is

Φ = Φ↑ ⊗ Φ↓ (8)

where Φ↑ and Φ↓ have dimensions M × N↑ and
M × N↓, respectively. The overlap between any
two Slater determinants is simply the product of the
overlaps of individual spin determinants:

〈φ|φ′〉 =
∏
σ=↑,↓

〈φσ|φ′σ〉 = det
[
(Φ↑)†Φ′↑

]
·det

[
(Φ↓)†Φ′↓

]
.

(9)

Any operator B̂ described by Eq. (5) acts indepen-
dently on the two spin parts:

B̂ |φ〉 = B̂↑ |φ↑〉 ⊗ B̂↓ |φ↓〉 (10)

Each of the spin components of B̂ can be repre-
sented as an M ×M matrix. Applying B̂ to a Slater
determinant simply involves matrix multiplications
for the ↑ and ↓ components separately, leading to
another Slater determinant |φ′〉 as in Eq. (6) i.e. the
result is B↑Φ↑ ⊗ B↓Φ↓. Unless specified, the spin
components of B̂ are identical i.e. B↑ = B↓ (note
the absence of a hat on B to denote the matrix of
the operator B̂).

II.2. The Hubbard Hamiltonian

The one-band Hubbard model is a simple
paradigm of a system of interacting electrons. Its
Hamiltonian is given by

Ĥ = K̂+V̂ = −t
∑
〈ij〉σ

(c†iσcjσ+c†jσciσ)+U
∑
i

ni↑ni↓,

(11)

where t is the hopping matrix element, and c†iσ and
ciσ are electron creation and destruction operators,

respectively, of spin σ on site i. The Hamiltonian
is defined on a lattice of dimension M =

∏
d Ld.

The lattice sites serve as the basis functions here,
i.e., |χi〉 denotes an electron localized on the site
labeled by i. The notation 〈 〉 in Eq. (11) indicates
nearest-neighbors. The on-site Coulomb repulsion
is U > 0, and the model only has two parameters:
the strength of the interaction U/t and the electron
density (N↑+N↓)/M . In this paper we will use t as
the unit of energy and set t = 1.

The difference between the Hubbard Hamiltonian
and a general electronic Hamiltonian is in the struc-
ture of the matrix elements in K̂ and V̂ . In the lat-
ter, K̂ is specified by hopping integrals of the form
Kij , while V̂ is specified by Coulomb matrix ele-
ments of the form Vijkl, with i, j, k, l in general run-
ning from 1 to M . In terms of the CPMC method,
the structure of K̂ makes essentially no difference.
The structure of V̂ , however, dictates the form of
the Hubbard-Stratonovich transformation (see Sec-
tion II.3.1) . For the Hubbard interaction, the re-
sulting one-body propagators turn out to be real,
as shown below, while for the general case complex
propagators arise and cause a phase problem [1].

II.3. Ground-state projection

We will focus on ground-state calculations in this
paper. (Finite-temperature generalizations to the
grand-canonical ensemble also exist [18, 19].) The
ground-state wave function |Ψ0〉 can be obtained
from any trial wave function |ΨT〉 that is not orthog-
onal to |Ψ0〉 by repeated applications of the ground-
state projection operator

Pgs = e−∆τ(Ĥ−ET) (12)

where ET is the best guess of the ground-state en-
ergy. That is, if the wave function at the n-th time
step is |Ψ(n)〉, the wave function at the next time
step is given by

|Ψ(n+1)〉 = e−∆τ(Ĥ−ET) |Ψ(n)〉 (13)

With a small ∆τ , the second-order Trotter ap-
proximation can be used:

e−∆τĤ = e−∆τ(K̂+V̂ ) ≈ e−∆τ K̂/2e−∆τ V̂ e−∆τ K̂/2 .
(14)

The residual Trotter error can be removed by, for ex-
ample, extrapolation with several independent runs
of sufficiently small ∆τ values. We illustrate this
technique in an exercise in Section IV.2.2.
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II.3.1. The Hubbard-Stratonovich transformation

In Eq. (14), the kinetic energy (or, more gener-

ally, one-body) propagator B̂K/2 ≡ e−∆τK̂/2 has
the same form as Eq. (5). However, the potential

energy propagator e−∆τV̂ does not. A Hubbard-
Stratonovich (HS) transformation can be employed

to transform e−∆τV̂ into the desired form. In the
Hubbard model, we can use the following:

e−∆τUni↑ni↓ = e−∆τU(ni↑+ni↓)/2
∑
xi=±1

p(xi) eγxi(ni↑−ni↓) ,

(15)
where γ is given by cosh(γ) = exp(∆τU/2). We in-
terpret p(xi) = 1/2 as a discrete probability density
function (PDF) with xi = ±1.

In Eq. (15), the exponent on the left, which comes

from the interaction term V̂ on the i-th site, is
quadratic in n, indicating the interaction of two elec-
trons. The exponents on the right, on the other
hand, are linear in n, indicating two non-interacting
electrons in a common external field characterized
by xi. Thus an interacting system has been con-
verted into a non-interacting system living in fluctu-
ating external auxiliary fields xi, and the summation
over all such auxiliary-field configurations recovers
the many-body interactions. The special form of HS
for the Hubbard interaction is due to Hirsch [20].
The linearized operator on the right hand side in
Eq. (15) is the spin (ni↑ − ni↓) on each site.

In this paper and in the code, we will use the
discrete spin decomposition in Eq. (15). There exist
other ways to do the HS transformation, e.g. based
on the Gaussian integral:

eÂ
2

=
1√
2π

∫ ∞
−∞

dx e−x
2/2 e

√
2x Â . (16)

There is also a charge version of the discrete
HS transformation involving the linearized operator
ni↑ + ni↓, the total charge on each site.

Different forms of the HS transformation can have
different efficiencies in different situations. In partic-
ular, preserving the appropriate symmetries of the
system can significantly reduce the statistical fluc-
tuations and reduce the error from the constrained-
path approximation [7].

Since we represent a Slater determinant as indi-
vidual spin determinants in Eq. (7), it is convenient
to spin-factorize Eq. (15) as

e−∆τUni↑ni↓ =
∑
xi=±1

p(xi)
[
b̂↑V (xi)⊗ b̂↓V (xi)

]
(17)

where the spin-dependent operator b̂σV (xi) on the i-
th lattice site is defined as

b̂σV(xi) = e−[∆τU/2−s(σ) γ xi]c
†
iσciσ (18)

and s(↑) = +1 and s(↓) = −1. The related operator

b̂V(xi) (i.e. without σ) includes both the spin up and
spin down parts. Below we will use the correspond-
ing symbol without hat (bV) to denote the matrix

representation of the operator (b̂V) associated with
that symbol.

The potential energy propagator e−∆τV̂ over all
sites can easily be seen to be the product of the
propagators e−∆τUni↑ni↓ over each site:

e−∆τV̂ =
∑

#”x

P ( #”x )
∏
σ=↑,↓

B̂σV ( #”x ) (19)

where #”x = {x1, . . . , xM} is one configuration of aux-

iliary fields over all M sites and B̂σV ( #”x ) =
∏
i b̂
σ
V (xi)

is the #”x -dependent product of the spin-σ propaga-
tors over all sites. The overall PDF here is P ( #”x ) =∏
i p(xi) =

(
1
2

)M
, to be distinguished from the PDF

p for one individual auxiliary field xi in Eq. (17).
Now the projection operator in Eq. (12) can be

expressed entirely in terms of operators in Eq. (5)

Pgs ≈ e∆τET

∑
#”x

P ( #”x )
∏
σ=↑,↓

B̂σK/2B̂
σ
V( #”x )B̂σK/2 (20)

As noted in Eq. (10), BK/2 has an ↑ and a ↓ compo-
nent, each of which is an M ×M matrix. Applying
each B̂K/2 to a Slater determinant |φ〉 simply in-
volves matrix multiplications with the matrix BK/2

for the ↑ and ↓ components of Φ separately, leading
to another Slater determinant |φ′〉 as in Eq. (6).

II.3.2. A toy model for illustration

Let us take, for example, a simple one-dimensional
four-site Hubbard model with N↑ = 2, N↓ = 1 and
open boundary condition. The sites are numbered
sequentially.

First let us examine the trivial case of free elec-
trons i.e. U = 0. We can write down the one-electron
Hamiltonian matrix, which is of dimension 4× 4:

H =

 0 −1 0 0
−1 0 −1 0
0 −1 0 −1
0 0 −1 0

 (21)

Direct diagonalization gives us the eigenstates of H
from which we immediately obtain the matrix Φ0 for
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the ground-state wave function |ψ0〉:

Φ0 =

0.3717 −0.6015
0.6015 −0.3717
0.6015 0.3717
0.3717 0.6015

⊗
0.3717

0.6015
0.6015
0.3717

 (22)

where the first matrix contains two single-particle
orbitals (two columns) for the two ↑ electrons and
the second matrix contains one single-electron or-

bital for the one ↓ electron. Each single-electron
orbital is an eigenvector of H.

The matrix Φ0 represents |φ0〉 in the same way
that Eq. (3) represents Eq. (2). Of course, the so-
lution above is also the restricted Hartree-Fock so-
lution to the interacting problem. We will often use
Φ0 as the trial wave function in CPMC below.

Next we consider the interacting problem, with
U > 0. Applying the HS transformation of Eq. (15)
to Eq. (14), we have

Pgs = e∆τET−∆τU(N↑+N↓)/2
∑
~x

P (~x) BK/2·

eγx1 0 0 0
0 eγx2 0 0
0 0 eγx3 0
0 0 0 eγx4

·BK/2⊗BK/2·

e−γx1 0 0 0
0 e−γx2 0 0
0 0 e−γx3 0
0 0 0 e−γx4

·BK/2 ,

(23)

where ~x = {x1, x2, x3, x4} and P ( #”x ) =
(

1
2

)4
. This

is just Eq. (20) specialized to a four-site lattice.

II.4. Random walk in Slater determinant space

The first component of the CPMC algorithm is the
reformulation of the projection process as branch-
ing, open-ended random walks in Slater determinant
space (instead of updating a fixed-length path in
auxiliary-field space).

Let us define BV( #”x ) =
∏
σ B

σ
V ( #”x ) as we have

done for b̂V. Applying the HS-transformed propa-
gator in Eq. (20) to one projection step in Eq. (13)
gives

|φ(n+1)〉 = e∆τET

∑
#”x

P ( #”x )
[
B̂K/2B̂V( #”x )B̂K/2

]
|φ(n)〉 .

(24)
In the Monte Carlo (MC) realization of this iter-

ation, we represent the wave function at each stage
by a finite ensemble of Slater determinants, i.e.

|Ψ(n)〉 ∝
∑
k

|φ(n)
k 〉 (25)

where k labels the Slater determinants and an overall
normalization factor of the wave function has been
omitted. These Slater determinants will be referred
to as random walkers.

The iteration in Eq. (24) is achieved stochastically
by MC sampling of #”x . That is, for each random

walker |φ(n)
k 〉, we choose an auxiliary-field config-

uration #”x according to the PDF P ( #”x ) and prop-

agate the determinant to a new determinant via

|φ(n+1)
k 〉 = B̂K/2B̂V( #”x )B̂K/2 |φ

(n)
k 〉.

We repeat this procedure for all walkers in the
population. These operations accomplish one step
of the random walk. The new population represents
|Ψ(n+1)〉 in the sense of Eq. (25), i.e. |Ψ(n+1)〉 ∝∑
k |φ

(n+1)
k 〉. These steps are iterated until suf-

ficient data has been collected. After an equili-
bration phase, all walkers thereon are MC sam-
ples of the ground-state wave function |Ψ0〉 and
ground-state properties can be computed. We will
refer to this type of approach as free projection.
In practice, branching occurs because of the re-
orthonormalization of the walkers, which we discuss
below in Section II.8. We emphasize that the sta-
tistical error bar can be reduced significantly with
more “optimal” forms of HS transformations to ex-
tend the reach of free-projection calculations (see
e.g., Refs. [1, 7]).

II.5. Importance sampling

To improve the efficiency of Eq. (24) and make
it a practical and scalable algorithm, an importance
sampling scheme [1, 14, 15] is required. In the pro-
cedure just described above, no information is con-
tained in the sampling of #”x on the importance of the
resulting determinant in representing |Ψ0〉. Com-
puting the mixed estimator of the ground-state en-
ergy

Emixed ≡
〈φT|Ĥ|Ψ0〉
〈φT|Ψ0〉

(26)
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requires estimating the denominator by
∑
k 〈φT|φk〉

where |φk〉 are random walkers after equilibration.
Since these walkers are sampled with no knowledge
of 〈φT|φk〉, terms in the summation over |φk〉 can
have large fluctuations that lead to large statisti-
cal errors in the MC estimate of the denominator,
thereby in that of Emixed.

With importance sampling, first we define an im-
portance function:

OT(φk) ≡ 〈φT|φk〉 , (27)

which estimates the overlap of a Slater determinant
|φ〉 with the ground-state wave function (approxi-
mated here by a trial wave function). As in Dif-
fusion Monte Carlo (DMC) [21], we also assign a
weight wk = OT(φk) to each walker. This weight is
initialized to unity for all walkers since in the initial

ensemble, |φ(0)
k 〉 = |φT〉 for all k.

We then iterate a formally different but mathe-
matically equivalent version of Eq. (24):

|φ̃(n+1)〉 ←
∑

#”x

P̃ ( #”x )B̂( #”x ) |φ̃(n)〉 (28)

where

B̂( #”x ) = B̂K/2B̂V( #”x )B̂K/2 . (29)

The walkers |φ̃(n)〉 are now sampled from a new dis-
tribution. They schematically represent the ground-
state wave function by:

|Ψ(n)〉 ∝
∑
k

w(n) |φ
(n)
k 〉

OT(φ
(n)
k )

, (30)

in comparison to Eq. (25).

The modified function P̃ ( #”x ) in Eq. (28) is P̃ ( #”x ) =∏M
i p̃(xi), where the probability for sampling the

auxiliary-field at each lattice site is given by

p̃(xi) =
OT(φ

(n)
k,i )

OT(φ
(n)
k,i−1)

p(xi). (31)

where

|φ(n)
k,i−1〉 = b̂V (xi−1) b̂V (xi−2) · · · b̂V (x1) |φ(n)

k 〉
(32)

is the current state of the k-th walker, |φ(n)
k 〉, after

its first (i−1) fields have been sampled and updated,
and

|φ(n)
k,i 〉 = b̂V (xi) |φ(n)

k,i−1〉 (33)

is the next sub-step after the i-th field is selected
and the walker is updated. Note that in the nota-

tion above |φ(n)
k,0〉 = |φ(n)

k 〉 and |φ(n)
k,M 〉 = |φ(n+1)

k 〉. As

expected, P̃ ( #”x ) is a function of both the current and
future positions in Slater-determinant space. Fur-

ther, P̃ ( #”x ) modifies P ( #”x ) such that the probability
of sampling #”x is increased when #”x leads to a de-
terminant with larger overlap with |φT〉 and is de-
creased otherwise. In each p̃(xi), xi can only take
the value of +1 or −1 and can be sampled by a
heatbath-like algorithm: choosing xi from the PDF
p̃(xi)/Ni where the normalization factor is

Ni ≡ p̃(xi = +1) + p̃(xi = −1) , (34)

and carrying a weight for the walker

w
(n)
k,i = Niw(n)

k,i−1 , (35)

in which we have used the same notation as in
Eqs. (32) and (33). The ratio of the overlaps
in Eq. (31), involving a change of only one site
(or even a few sites if desired), can be computed
quickly using the Sherman-Morrison formula, as
shown in the code. The inverse of the overlap matrix[
(ΦT)†Φ

(n)
k

]−1

is kept and updated after each xi is

selected.
It should be pointed out that a significant reduc-

tion in computational cost is possible in the present
code. Because the free-electron trial wave function
is used here, the overlap matrix can be trivially up-
dated after each application of B̂K/2. In the code,
however, the update is still carried out explicitly in
order to allow for a more general form of the trial
wave function.

We note that, for a general continuous auxiliary-
field, the importance sampling can be achieved by a
force bias [1, 4, 22]. The above discrete version can
be viewed as a two-point realization of the continu-
ous case.

II.6. The sign problem and the constrained
path approximation

II.6.1. The sign problem

The sign problem occurs because of the funda-
mental symmetry between the fermion ground state
|Ψ0〉 and its negative− |Ψ0〉 [23]. This symmetry im-
plies that, for any ensemble of Slater determinants
{|φ〉} which gives a Monte Carlo representation of
the ground-state wave function, there exists another
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ensemble {− |φ〉} which is also a correct representa-
tion. In other words, the Slater determinant space
can be divided into two degenerate halves (+ and −)
whose bounding surface N is defined by 〈Ψ0|φ〉 = 0.
This surface is in general unknown. Except for some
special cases [20], walkers do cross N in their prop-
agation by Pgs, causing the sign problem. At the
instant such a walker lands on N , the walker will
make no further contribution to the representation
of the ground state at any later time because

〈Ψ0|φ〉 = 0 =⇒ 〈Ψ0|e−τH |φ〉 = 0 for any τ
(36)

Paths that result from such a walker have equal
probabilities of being in either half of the Slater de-
terminant space [1]. Computed analytically, they
would cancel and make no contribution in the
ground-state wave function. However, because the
random walk has no knowledge of N , these paths
continue to be sampled (randomly) in the random
walk and become Monte Carlo noise.

To eliminate the decay of the signal-to-noise ratio,
we impose the constrained path approximation. It
requires that each random walker at each step have
a positive overlap with the trial wave function |φT〉:

〈φT|φ(n)
k 〉 > 0. (37)

This yields an approximate solution to the ground-
state wave function, |Ψc

0〉 =
∑
φ |φ〉, in which all

Slater determinants |φ〉 satisfy Eq. (37). Note that
from Eq. (36), the constrained path approxima-
tion becomes exact for an exact trial wave function
|ψT〉 = |Ψ0〉. The constrained path approximation
is easily implemented by redefining the importance
function in Eq. (27):

OT(φk) ≡ max{〈φT|φk〉 , 0} (38)

This prevents walkers from crossing the trial nodal
surfaceN and entering the “−” half-space as defined
by |φT〉. We note that imposing Eq. (37) is funda-
mentally different from just discarding the negative
contributions in the denominator of Eq. (26); the
constrained path condition results in a distribution
of walkers that vanishes smoothly at the interface
between the “+” and “−” parts of the determinant
space. The use of a finite ∆τ causes a small dis-
continuity which is a form of Trotter error in the
constraint; this error can be further reduced [24].

II.6.2. Twist boundary condition and the phase
problem

Our simulations are carried out in supercells of
finite sizes. For most quantities that we wish to
calculate, the periodic boundary condition (PBC)
causes large finite-size effects, often compounded by
significant shell effects [3]. In order to reduce these
effects and reach the thermodynamic limit more
rapidly, it is more effective to use the twist bound-
ary condition (TBC) and average over the twist an-
gles [3, 25] (TABC). Under the TBC, the wave func-
tion Ψ(r1, r2, . . . , rN) gains a phase when electrons
hop around lattice boundaries:

Ψ(. . . , rj + L, . . . ) = ei L̂·ΘΨ(. . . , rj, . . . ) , (39)

where L̂ is the unit vector along L and the twist
angle Θ = (θx, θy, θz, . . . ) is a parameter with
θd ∈ (−π, π] for d = x, y, z, . . . . It is implemented
straightforwardly as a modification to the matrix el-
ements in the K̂ part of the Hamiltonian. A twist
is equivalent to shifting the underlying momentum
space grid by (θx/Lx, θy/Ly, θz/Lz, · · · ). Symmetry
can be used to reduce the range of Θ. One could ei-
ther choose to have a special grid of Θ values [11] or
choose them randomly [3, 25]. In the illustrations we
will use the latter. The QMC results are averaged,
and the MC error bar will be the combined statisti-
cal errors from the random Θ distribution and from
each QMC calculation for a particular Θ.

With a general twist angle, the AFQMC method
will have a “phase problem” instead of the sign prob-
lem described above. This is because the hopping
matrix elements in K̂ now have complex numbers
which make the orbitals in the random walkers com-
plex. The stochastic nature of the random walk
will then lead to an asymptotic distribution which
is symmetric in the complex plane [1, 4]. For each
walker |φ〉, instead of a + |φ〉 and − |φ〉 as in the
sign problem, there is now an infinite set {eiθ |φ〉}
(θ ∈ [0, 2π]) from which the random walk cannot
distinguish.

The phase problem that occurs in the present case
is a “milder” form of the most general phase prob-
lem, because here the phases arise from the one-
body hopping term instead of the two-body inter-
action term. The latter takes place in a long-range
Coulomb interaction, for example. In that case, the
phase problem is controlled with the phaseless or
phase-free approximation [1, 4]. When the phase
only enters as a one-body boundary condition, the
stochastic auxiliary-fields are not directly coupled
to complex numbers. A simple generalization of the
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constrained-path approximation suffices [3]: at each
step of propagation, the random walkers are required
to satisfy the constraint

Re

{
〈φT|φ(n+1)

k 〉
〈φT|φ(n)

k 〉

}
> 0 (40)

where |φ(n)
k 〉 and |φ(n+1)

k 〉 are the current and pro-
posed walkers. Note that Eq. (38) is a special case of

Eq. (40) because 〈φT|φ(0)
k 〉 > 0 and all overlaps are

real when K̂ is real. We emphasize that, when the
HS transformation leads to complex one-body prop-
agators as in the case of realistic electronic problems,
an extra step is required to “importance-transform”
the propagators using the phase of the overlap [1, 4].

II.6.3. Systematic error from the constrained-path
approximation, and its reduction and removal

Most applications have used a single-determinant
|ψT〉 taken directly from a Hartree-Fock (HF) or
density-functional theory (DFT) calculations. In
the Hubbard model, the restricted HF wave func-
tion is the same as the free-electron wave function,
while the unrestricted HF wave function breaks spin-
symmetry and allows, for example, antiferromag-
netism and spin-density-wave states [26]. A large
number of benchmarks have been carried out with
these wave functions [1, 7].

Figure 1 illustrates the effectiveness of the con-
strained path approximation. The system is a 4× 4
lattice with 7 spin-↑ and 7 spin-↓ electrons, U = 4
and Θ = (0.02π, 0.04π). The free-projection (FP)
run exhibits growing statistical fluctuations as a
function of projection time, indicative of the sign
problem. With the constraint, CPMC fluctuations
are always smaller with the same amount of compu-
tational cost, and they are independent of projection
time. The CPMC results converge to a value below
the exact result (horizontal line).

Multi-determinant trial wave functions can reduce
the systematic error because they are better vari-
ational wave functions [27]. Using wave functions
that restore symmetries of the system can reduce
the systematic error significantly [7]. The symme-
try restoration can be either in the form of a multi-
determinant trial wave function or from symmetry
projection [16]. For example, using a 10-determinant
symmetry trial wave function can reduce the sys-
tematic error in the CPMC result for the system in
Fig. 1 with periodic boundary condition by a signif-
icant factor [7].

-17
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-13
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FIG. 1. (Color online) Illustration of the sign problem.
The blue and red curves show the energy during a pro-
jection from τ = 0 to τ = 7.5 with and without the
constraint, respectively. The dashed black line shows
the exact result. The CP error bars are too small to be
seen. To improve clarity, only every other CP energy
measurements are shown for τ > 2.6.

Recently, it has been demonstrated [7, 8, 28]
that free-projection and release-constraint calcula-
tions allow systematic removal of the constrained-
path bias by “lifting” the constraint (and bringing
back the sign problem). This offers another avenue
for systematically improvable AFQMC calculations.

II.7. Energy measurement

CPMC-Lab uses the mixed estimator in Eq. (26)
for the ground-state energy which, for an ensemble
{|φ〉}, is given by:

Emixed =

∑
k wk EL [φT, φk]∑

k wk
(41)

where the local energy EL is:

EL [φT, φ] =
〈φT|Ĥ|φ〉
〈φT|φ〉

(42)

This quantity can be easily evaluated for any walker
φ as follows. For any pair of Slater determinants
|φT〉 and |φ〉, we can calculate the one-body equal-
time Green’s function as:

〈c†jσciσ〉 ≡
〈φT|c†jσciσ|φ〉
〈φT|φ〉

=
[
Φσ [ (ΦσT)†Φσ ]−1(ΦσT)†

]
ij
.

(43)
This immediately enables the computation of the ki-

netic energy term
〈
φT

∣∣∣−t∑〈ij〉σ c†iσcjσ ∣∣∣φ〉. The
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potential energy term
〈
φT

∣∣∣U∑i c
†
i↑ci↑c

†
i↓ci↓

∣∣∣φ〉
does not have the form of Eq. (43), but can be re-
duced to that form by an application of Wick’s the-
orem:

〈c†i↑ci↑c
†
i↓ci↓〉 = 〈c†i↑ci↑〉 〈c

†
i↓ci↓〉+ 〈c†i↑ci↓〉 〈ci↑c

†
i↓〉

= 〈c†i↑ci↑〉 〈c
†
i↓ci↓〉 (44)

The reduction to the last line occurs because the ↑
and ↓ spin sectors are decoupled in both |φT〉 and
|φ〉. (This is not the case in a pairing [29] or general-
ized Hartree-Fock wave function [16]. The former is
the desired form for U < 0. The latter can be used
to improve the quality of the trial wave function for
U > 0, and is necessary if the Hamiltonian contains
spin-orbit coupling.)

The mixed estimator for the energy arises nat-
urally from importance sampling, and reduces the
statistical variance of the computed result. A draw-
back of the mixed estimator is that the ground-
state energy obtained in AFQMC under the con-
strained path approximation is not variational [1].
The mixed estimators for observables which do not
commute with the Hamiltonian are biased. The
back-propagation technique can be used to obtain
pure estimates [2, 22].

II.8. Other implementation issues

II.8.1. Population control

As the random walk proceeds, some walkers may
accumulate very large weights while some will have
very small weights. These different weights cause
a loss of sampling efficiency because the algorithm
will spend a disproportionate amount of time keep-
ing track of walkers that contribute little to the en-
ergy estimate. To eliminate the inefficiency of carry-
ing these weights, a branching scheme is introduced
to “redistribute” the weights without changing the
statistical distribution. In such a scheme, walkers
with large weights are replicated and walkers with
small weights are eliminated with some probability.

However, because branching might cause the pop-
ulation to fluctuate in an unbounded way (e.g. to
grow to infinity or to perish altogether), we perform
population control to eliminate this instability at the
cost of incurring a bias when the total weight of the
walkers is modified. This bias can be reduced by car-
rying a history of overall weight correction factors.
However, the longer this history is included in the
energy estimators, the higher the statistical noise. In

this package we use a simple “combing” method [30],
which discards all history of overall weight normal-
izations. We note that there exist more elaborate
approaches [2, 21, 30], for example, keeping a short
history of the overall weight renormalization. The
length of the history to keep should be a compromise
between reducing bias (long) and keeping statistical
fluctuation from becoming much larger (short). The
effect of population control and how to extrapolate
away the bias are illustrated in the Exercises.

II.8.2. Re-orthonormalization

Repeated multiplications of BK/2 and BV to a
Slater determinant in Eq. (24) lead to numerical in-
stability, such that round-off errors dominate and

|φ(n)
k 〉 represents an unfaithful propagation of |φ(0)

k 〉.
This instability is controlled by periodically apply-
ing the modified Gram-Schmidt orthonormalization
to each Slater determinant. For each walker |φ〉, we
factor its corresponding matrix as Φ = QR where
R is a upper triangular matrix and Q is a matrix
whose columns are orthonormal vectors represent-
ing the re-orthonormalized single-particle orbitals.
After this factorization, Φ is replaced by Q and the
corresponding overlap OT by OT/ det(R) because Q
contains all the information about the walker |φ〉
while R only contributes to the overlap of |φ〉. With
importance sampling, only the information in Q is
relevant and R can be discarded.

III. ALGORITHM

(1) For each walker, specify its initial state. Here
we use the trial wave function ΦT as the initial
state and assign the weight w and overlap OT

each a value of unity.

(2) If the weight of a walker is nonzero, propagate
it via BK/2 as follows:

(a) Perform the matrix-matrix multiplication

Φ′ = BK/2Φ (45)

(recall the convention that BK/2 denotes the

matrix of B̂K/2) and compute the new im-
portance function

O′T = OT(φ′) . (46)

(We can also work in momentum space, e.g.,
by using fast Fourier transforms.)
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(b) If O′T 6= 0, update the walker, weight and
OT as

Φ← Φ′ , w ← wO′T/OT , OT ← O′T (47)

(3) If the walker’s weight is still nonzero, propagate
it via BV( #”x ) as follows

(a) Compute the inverse of the overlap matrix

Oinv =
(

Φ†TΦ
)−1

(48)

(b) For each auxiliary field xi, do the following:

(i) Compute p̃(xi)

(ii) Sample xi and update the weight as

w ← w[p̃(xi = +1) + p̃(xi = −1)] (49)

(iii) If the weight of the walker is still not
zero, propagate the walker by perform-
ing the matrix multiplication

Φ′ = bV(xi) Φ (50)

and then update OT and Oinv.

(4) Repeat step 2.

(5) Multiply the walker’s weight by a normalization
factor:

w ← w e∆τET (51)

where ET is an adaptive estimate of the ground
state energy E0 and is calculated using the
mixed estimator in (41).

(6) Repeat steps 2 to 5 for all walkers in the popu-
lation. This forms one step of the random walk.

(7) If the population of walkers has achieved
a steady-state distribution, periodically make
measurements of the ground-state energy.

(8) Periodically adjust the population of walkers.
(See Section II.8.1.)

(9) Periodically re-orthonormalize the columns of
the matrices Φ representing the walkers. (See
Section II.8.2.)

(10) Repeat this process until an adequate number
of measurements have been collected.

(11) Compute the final average of the energy mea-
surements and the standard error of this average
and then stop.

FIG. 2. (Color online) The GUI tab that allows the user
to set all the parameters of the calculation.

IV. PACKAGE OVERVIEW AND
INSTRUCTIONS

The package can be run either directly from the
command line or from the GUI. The GUI requires
Matlab R2010b (version 7.11) and above but the
non-interactive scripts can run on any version of
Matlab. The GUI is meant to minimize the initial
learning process and should be used only for small
systems and short runs. Its visualization can be used
to help understand how the random walkers propa-
gate and how the auxiliary-fields build in the elec-
tron correlation. Figures 2 and 3 show the program’s
GUI which allows users to input model parameters
such as the number of sites and electrons, the twist
condition, the interaction strength and the hopping
amplitude. The run parameters allow virtually any
combination that the user chooses to configure the
AFQMC run, including the number of walkers, the
time step ∆τ , the numbers of blocks for equilibra-
tion and measurement, the size of the blocks, the
intervals for carrying out population control and sta-
bilization and so on. There are two tabs. The first
gives the GUI for run parameters, while the second
shows the progress of the calculation. Under the
second tab, the total denominator of the mixed es-
timator and the calculated energy are monitored as
a function of the imaginary time τ .

The run could also be set in a more detailed visu-
alization mode. The structure of the random walker
orbitals is illustrated by plotting the orbital coeffi-
cients, along with the electronic “density” 〈niσ〉 for
each spin at site i, defined as 〈niσ〉 = 〈φk|n̂iσ|φk〉
for the k-th walker. Figure 3 shows this feature, in
which a snapshot is highlighted for a four-site calcu-
lation.
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(a)With visualizations (b)Without visualizations

FIG. 3. (Color online) The GUI for visualizing the calculation. These figures show (a) a detailed visualization mode
which shows the walkers’ orbitals and electronic density, with the currently propagated walker highlighted in yellow,
(b) the normal run mode with the detailed visualizations turned off.

IV.1. Files in the package

This package contains ten source files for the
CPMC program, one GUI program, and two scripts
as samples for running the program:

CPMC Lab.m: is the main driver of the package. For
every time step, it calls stepwlk.m to propa-
gate the walkers. When appropriate, it calls
measure.m to measure the energy, stlbz.m to
re-orthonormalize the walkers or pop cntrl.m
to do population control. After the end of the
random walk, it calculates the final average
and standard error of the energy and saves the
results to a file.

initialization.m: runs validation.m to conduct
a basic check on the input parameters and ini-
tializes internal quantities, e.g. the total num-
ber of sites and electrons. It forms the free-
electron trial wave function and creates the
initial population of walkers.

validation.m: verifies the basic validity of user in-
puts, as mentioned above.

H K.m: creates the one-body kinetic Hamiltonian.

stepwlk.m: carries out one step of the random walk
by calling halfK.m, V.m and halfK.m again.

halfK.m: propagates a walker by e−∆τK̂/2

V.m: carries out importance sampling site by site
to select the auxiliary fields, and propagates

a walker by e−∆τV̂ .

measure.m: computes the energy of a walker.

stblz.m: orthonormalizes walkers by the modified
Gram-Schmidt algorithm.

pop cntrl.m: carries out population control by a
simple-combing method.

sample.m: is a script that allows users to set input
parameters.

batchsample.m: is a script that loops over multiple
sets of parameters.

GUI.m: launches the GUI of the package. It is a
stand-alone file that is independent of all the
other files in the package and contains all the
subroutines of a QMC run.

IV.2. Exercises

Below is a list of suggested exercises. They are
designed as a step-by-step guide for the reader to
gain a basic familiarity with the code and learn the
most essential features of a CPMC or AFQMC cal-
culation. The concepts covered in the first few ex-
ercises are universal, such as auto-correlation time,
statistical errors, equilibration time, Trotter errors,
population control bias, and so on. It is essential
to master them before any production runs. The
other exercises are more open-ended. Their goal is
to help the reader gain more insight and facilitate
real applications. In the next Section, several exam-
ple applications are shown.
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IV.2.1. Running the sample script sample.m

The first assignment is to run a “sample.” To
run the script sample.m, put all the files in this
package directly under the current directory. Type
“sample” (without quotes) and hit Enter to run the
script. The main function CPMC Lab will return the
values of E ave and E err to the workspace, and
save more detailed data in the *.mat file named by
sampledatafile. The main function will also plot a
figure of the energies from each measurement block,
E(i blk) vs. i blk× N blksteps× deltau.

Save the figure via the File menu and explain
its behavior. Obtain a rough estimate for how
much imaginary time is needed to equilibrate. This
interval, τeq, corresponds to the input deltau ×
N blksteps × N eqblk. Now modify the parame-
ters to include an “equilibration” phase. Do statis-
tical analysis on the “measurement” phase or do a
loop over different values of N blksteps. We pro-
vide with the package a sample batch run script,
batchsample.m, that loops over multiple sets of pa-
rameters. Determine the minimum length of each
measurement block (N blksteps) necessary to ob-
tain uncorrelated results and a reliable estimate of
the statistical error.

Now modify the parameters using the correct
N eqblk and N blksteps for a few “standard” runs.
Table I gives the exact energies for several systems
(U/t = 4) for comparison.

IV.2.2. Controlling the basic run parameters

Let us next study the behaviors of the Trotter
error and population control bias:

1. Run the code for a few different values of ∆τ
(deltau), e.g. 0.025, 0.05, and 0.1, and ex-
amine the convergence of the energies as a
function of deltau. Note that the number
of steps in each block, N blksteps, the fre-
quency of measurement, itv em (and option-
ally itv modsvd and itv pc) should be ad-
justed to obtain comparable statistics.

2. Run the code for several values of population
size (N wlk), e.g. 10, 20, 40, and 80, and ex-
amine the population bias (systematic error vs.
the population size). Note that with fewer
walkers in the population, more blocks will be
needed to get comparable statistical accuracy.

IV.2.3. Calculating E K and E V separately

The program only outputs the total ground state
energy. The mixed-estimate for other observables is
biased, as mentioned earlier. The standard way to
calculate unbiased expectation values is to use the
back-propagation technique (see Refs [22, 31]). Let
us calculate the kinetic energy E K and the potential
energy E V in an alternative way. From the Hellman-
Feynman theorem, we have

E V =

〈
ψ(U)

∣∣∣∣U dH

dU

∣∣∣∣ψ(U)

〉
= U

dE

dU
(52)

Obtain dE
dU by finite difference with three separate to-

tal energy calculations at (U−∆U), U , and (U+∆U)
with a small ∆U . Higher-order finite difference
methods can also be used for more accurate results
as illustrated in Section VI. Some exact results at
U = 4 are listed in Table I for comparison. For the
two-dimensional system in the last three rows, ob-
tain a result with sufficiently small statistical error
bars to examine the systematic error from the con-
strained path approximation.

IV.2.4. The Hydrogen molecule

Let us study the system of two interacting
fermions on two sites: N up = 1, N dn = 1, Lx = 2
and Ly = 1. We set tx = 1 and kx = 0 (ty and ky
will be ignored when Ly = 1). Study the properties
of the system as the interaction strength U is varied
(while keeping t = 1). This can be viewed as a crude
model (minimal basis) for breaking the bond in a H2

molecule. As the distance between the two protons
increases, the interaction strength U/t increases.

1. Run the QMC code at different values of U and
compare your results with the exact solution:

E =
1

2

(
U −

√
U2 + 64

)
(53)

2. Plot E K and E V vs. U. Explain their behaviors.

3. Obtain the double occupancy 〈n1↑n1↓〉 (see
Section IV.2.3). From it, derive the correla-
tion function 〈n1↑n2↓〉. Explain its behavior
vs. U.

IV.2.5. Ground-state energy of a chain

Let us study the half-filled Hubbard model in one
dimension and how the energy converges with re-
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system (kx,ky) 〈K〉 〈V 〉 E0

2× 1 1 ↑ 1 ↓ (+0.0819,+0.0000) -3.54222 1.09963 -2.44260

4× 1 2 ↑ 2 ↓ (+0.0819,+0.0000) -3.29161 1.17491 -2.11671

8× 1 4 ↑ 4 ↓ (+0.0819,+0.0000) -7.65166 3.04575 -4.60591

2× 4 3 ↑ 2 ↓ (+0.0819,−0.6052) -13.7778 1.65680 -12.1210

3× 4 3 ↑ 3 ↓ (+0.02, 0.04) -15.2849 1.29311 -13.9918

4× 4 5 ↑ 5 ↓ (0, 0) -22.5219 2.94100 -19.58094

TABLE I. Parameters and exact results for sample runs.

spect to system size. Run the program for a series
of lattice sizes (e.g. 2×1, 4×1, 6×1, 8×1, . . . ), each
averaging over a set of random twist angles kx. Plot
the energy per site vs. 1/L2, and examine its conver-
gence behavior. (In Section VI a detailed example
is given.)

IV.2.6. Addition to the program: other correlation
functions

Program in the mixed estimator of some observ-

ables, e.g. the one-body density matrix 〈c†iσcjσ〉, the
spin-spin correlation function 〈SiSj〉 (where Si =
ni↑ − ni↓), and the charge-charge correlation func-
tion 〈(ni↑ + ni↓)(nj↑ + nj↓〉). Calculate the mixed
estimate for E K and E V and compare with the re-
sults from Sec. IV.2.3.

V. COMPUTATIONAL SPEED

As mentioned in Section I, a major drawback of
the Matlab package is that it is significantly slower
than a standard production code written in FOR-
TRAN or C. This is outweighed by the advantages
in pedagogical value and in providing the clearest
algorithmic foundation. From this foundation, the
users could build a CPMC or phase-free AFQMC
code tailored toward their own applications. As il-
lustrated in the next section, significant applications
can be carried with the present Matlab code as is.

Here we give some rough comparisons between
the Matlab code and a production code in FOR-
TRAN. To provide an idea of the timing difference,
we describe two examples. For the calculation at
U = 4 in a 4 × 4 lattice with 5 spin-↑ and 5 spin-↓
electrons (the same number of lattice sites as Fig-
ure 4), the FORTRAN code takes 1 minute to run
on an Intel Core i7-2600 3.40 GHz processor, com-
pared to 32 minutes for the Matlab code. Scal-
ing up the system size to a 128 × 1 lattice with 65

spin-↑ and 63 and spin-↓ electrons (the largest sys-
tem in Figure 6), the FORTRAN code requires 186
minutes while the Matlab code takes 460 minutes.
The parameters for both run are deltau = 0.01,
N wlk = 1000, N blksteps = 40, N eqblk = 10,
N blk = 50, itv modsvd = 5, itv pc = 40 and
itv Em = 40.

Using OpenMP, Matlab can automatically speed
up computations in a multi-core environment. Fur-
thermore, Matlab users with Matlab’s Paral-
lel Computing Toolbox installed can easily paral-
lelize the code by distributing the propagation of
individual walkers over multiple processor cores.
This is done by 1) changing the main for loop in
stepwlk.m into a parfor loop and 2) opening a pool
of n parallel Matlab workers with the command
matlabpool(’open’,n) before the equilibration phase
begins in CPMC Lab.m.

The computational cost of the CPMC and phase-
free AFQMC methods scales algebraically, roughly
as the third power of system size. (Different pieces
of the code scale as different combinations of N and
M .) The memory required to run CPMC-Lab is pro-
portional to the product of (the basis size) × (the
number of electrons) × (the number of random walk-
ers). The random walkers are only loosely coupled.
The approach is ideally suited for a distributed mas-
sively parallel environment [32].

VI. ILLUSTRATIVE RESULTS

Figure 4 compares energy calculations by
CPMC-Lab against exact diagonalization (ED) re-
sults for a one-dimensional 16-site Hubbard model
with 5 spin-↑ and 7 spin-↓ electrons. The parame-
ters of the run are N wlk = 5000, deltau = 0.01,
N blksteps = 40, N blk = 150, N eqblk = 30,
itv pc = 5, itv Em = 40 and itv modsvd = 1.
The potential energy is obtained by the Hellman-
Feynman method of Eq. (52), where the derivative
dE
dU is calculated using the five-point stencil. The
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kinetic energy is simply the difference between the
total and potential energy.

In one-dimension, the CPMC method is exact. As
seen in the figure, the agreement between CPMC
and ED results is excellent. As the interaction
strength U increases, the kinetic energy also in-
creases because more electrons are excited to occupy
higher single-particle levels. The potential energy
is non-monotonic as a consequence of two oppos-
ing tendencies. Double occupancy 〈n↑n↓〉 (shown in
the inset) is rapidly reduced as the interaction is in-
creased. On the other hand, the growing value of U
increases the potential energy linearly.

We next compute ground-state properties of the
one-dimensional Hubbard model in the thermody-
namic limit. Since our QMC calculations are per-
formed in finite-sized supercells, it is important to
reduce finite-size effects and obtain better conver-
gence as M → ∞. In Figure 5, we show the calcu-
lated ground-state energy per site versus the super-
cell size at half-filling for U = 4. We compare two
sets of data, one with PBC (Γ-point) and the other
with twist-averaging boundary condition (TABC) as
discussed in Section II.6.3. In the TABC runs, each
data point is obtained by averaging over random
samples of the twist angle Θ. That is, the kx values
are chosen randomly from the interval (−1, 1], corre-
sponding to θx ∈ (−π, π]. The number of kx points
for each lattice size is chosen to keep the product
(lattice size)× (number of kx values) roughly
constant (∼ 80 in this case) while maintaining a min-
imum of 4 points.

In the PBC runs, we added a small twist angle kx
whenever the electron configuration is open-shell in
order to break the degeneracies in the single-particle
energy levels (see Section II.6.3). The run param-
eters for this and subsequent results are identical
to those used in Figure 4 except for N wlk = 1000,
itv pc = 40 and itv modsvd = 5.

The PBC data is seen to exhibit large finite-size
effects, with a zig zag pattern reflecting differing
trends for closed-shell and open-shell systems. We
reiterate that this behavior is not from any numer-
ical problem; rather it is the nature of the exact
ground-state eigenvalue of the Hamiltonian for these
finite supercells under PBC. The TABC data, on
the other hand, is smooth and monotonic. As the
supercell size increases, the two sets of data ap-
proach each other, and converge to the same limit.
The best fit of the TABC data to a straight line is
shown in the figure. The fit is given by E0/M =
−0.57361 − 0.63192/M2, leading to a thermody-
namic value of −0.5736(1), to be compared to the
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FIG. 4. (Color online) The total, potential and kinetic
energies versus the interaction strength U for a 16-site
ring with 5 spin-↑ and 7 spin-↓ electrons. CPMC results
(red error bars) are compared with exact diagonalization
(ED) (blue solid curves). Restricted (cyan) and unre-
stricted (magenta) Hartree-Fock results have also been
drawn for comparison in panel (a). The inset in panel
(b) shows the double occupancy 〈n↑n↓〉.
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FIG. 5. (Color online) Ground-state energy per
site vs. inverse square lattice size for half-filled one-
dimensional lattices at U = 4. Results from PBC (blue)
and TABC (red) are shown. The lattice size in PBC
ranges from 2 to 40 and those in TABC are from 2 to
128. The red solid line in the inset is the best fit of the
TABC data (for lattice sizes 4 to 128) while the dashed
blue line is to guide the eye. The inset shows a closeup
view (from 12 to 128 sites) of the convergence to the ther-
modynamic limit. The exact result is shown in green for
comparison. For clarity, the error bar of the intercept
in the inset is offset to the left of the green symbol for
exact result.

exact result of −0.573729 from the Bethe ansatz [33].
We next compute the spin and charge excitation

gaps. The spin gap is defined as the energy difference
between the present system and that with one spin
flipped:

∆s = E0 (N↑ + 1, N↓ − 1)− E0 (N↑, N↓) , (54)

where E0 (N↑, N↓) is the total ground-state energy
for a finite supercell with N↑ spin-↑ and N↓ spin-↓
electrons.

Figure 6 shows the result of the spin gap for the
one-dimensional Hubbard model at half-filling, for
U = 4, as a function of inverse lattice size. TABC
is used in these calculations, choosing a random
set of twist values to calculate each total energy in
Eq. (54). The parameters of the run are identical to
those in Figure 4.

As the lattice size increases, the calculated spin
gap converges smoothly. A linear fit to all the data
yields an asymptotic value of ∆s = 0.0036(80), con-
sistent with the Haldane conjecture of a zero spin
gap [34, 35].

The charge gap is defined by the addition and re-
moval energy:

∆c = E0 (N↑ + 1, N↓)+E0 (N↑ − 1, N↓)−2E0 (N↑, N↓) ,
(55)
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FIG. 6. (Color online) The calculated spin gap vs. in-
verse lattice size for one-dimensional Hubbard model at
half-filling, U = 4. The red dashed line is drawn to guide
the eye. The inset shows a closeup view of the conver-
gence from 12 to 128 sites. The blue solid line is a linear
fit of the data for lattice sizes 8 to 128. For clarity, the
error bar of the intercept in the inset is offset to the left
of the vertical axis at 1/M = 0.

where in the present case N↑ = N↓ = M/2. We also
calculate, alternatively

∆′c = E0 (N↑ + 1, N↓ + 1)−E0 (N↑, N↓)−U , (56)

which we expect to give a consistent result based on
the analytic result relating the chemical potentials
to U [33]. The results of the calculated charge gap
at U = 4 are shown in Figure 7.

As the lattice size increases from 2 to 128 (right
to left), both types of charge gap converge toward a
finite value. A linear fit to the data of ∆c yields
a charge gap of 1.266(21) in the thermodynamic
limit, consistent with the exact analytic result of
1.28673 [33].

VII. SUMMARY

In this paper we described CPMC-Lab, an open-
source Matlab program for studying the many-
body ground state of Hubbard-like models in any
dimension, and for learning the constrained-path
and phase-free auxiliary-field Monte Carlo meth-
ods. The package illustrates the constrained-path
Monte Carlo method, with a graphical interface.
The ground-state energy is calculated using impor-
tance sampling and implementing the algorithmic
details of a total energy calculation. This tool al-
lows users to experiment with various model and
run parameters and visualize the results. It pro-
vides a direct and interactive environment to learn
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FIG. 7. (Color online) The calculated charge gap vs. in-
verse lattice size for the one-dimensional Hubbard model
at half-filling, U = 4. The lattice size ranges from 2 to
128. The two sets of data are obtained according to ∆′

c

(blue) and ∆c (red), respectively. The dashed curves
in the main figure are drawn to guide the eye. The in-
set shows a closeup view at larger supercell sizes. The
red and blue solid lines represent linear fits to the cor-
responding subsets of data with lattice sizes 16 to 128.
The exact result of 1.28673 in the thermodynamic limit
is indicated in green for comparison. For clarity, in the
inset, the error bars for the two intercepts are offset to
the left of the green symbol for exact result.

the method and study the code with minimal over-
head for setup. Furthermore, it provides a founda-
tion and template for building a CPMC or phase-
free AFQMC calculation for essentially any inter-
acting many-fermion system with two-body interac-
tions, including ab initio calculations in molecules
and solids.
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Appendix A: Some useful Matlab commands

• Tab completion is available in the Matlab
command window for the names of functions
and scripts (either built-in, on the search path

or in the current directory) and variables in
the current workspace.

• Ending a command with semicolon suppresses
its output.

• To display the value of the variable
variablename:

variablename

• To display a brief description and the syntax
for functionname in the command window:

help functionname

• To call a function:

[out1 ,out2 ,...]= myfunc(in1 ,in2 ,...)

• To run the script scriptname:

scriptname

• To set display format to long (15 decimal
places) instead of the default short (4 deci-
mal places):

format long

• To load the variables from a *.mat file into the
workspace:

load filename.mat

or double click the *.mat file or select Import
Data from the workspace menu

• To remove all variables from the workspace:

clear

• To generate an m× n matrix containing pseu-
dorandom values drawn from the standard uni-
form distribution on (0, 1):

rand (m, n)

• To create a new individual figure window on
the screen:

figure

• To close all the figure windows:

close all

• To plot each column in the (real) matrix Ydata
versus the index of each value:

plot(Ydata)

• To plot each column in the matrix Ydata ver-
sus Xdata:

plot(Xdata ,Ydata)
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• To plot each vector in Yn versus the corre-
sponding vector Xn on the same axes:

plot(X1,Y1,X2,Y2 ,...,Xn,Yn)

• To plot Ydata versus Xdata with symmetric
error bars 2*Err(i) long:

errorbar(Xdata ,Ydata ,Err)

• To hold the plot so that subsequent plotting
commands add to the existing graph instead
of replacing it:

hold all

• To put a title string at the top-center of the
current axes:

title(’string ’)

• To label the x-axis:

xlabel(’string ’)

and similarly for the y-axis

[1] S. Zhang, in Emergent Phenomena in Correlated
Matter Modeling and Simulation, vol 3, edited
by E. Pavarini, E. Koch, and U. Schollwock
(Forschungszentrum Julich, 2013) p. 15.1, iSBN
978-3-89336-884-6. Free online at http://www.

cond-mat.de/events/correl13.
[2] S. Zhang, J. Carlson, and J. E. Gubernatis, Phys.

Rev. B 55, 7464 (1997).
[3] C.-C. Chang and S. Zhang, Phys. Rev. B 78, 165101

(2008).
[4] S. Zhang and H. Krakauer, Phys. Rev. Lett. 90,

136401 (2003).
[5] W. A. Al-Saidi, S. Zhang, and H. Krakauer, The

Journal of Chemical Physics 124, 224101 (2006).
[6] C.-C. Chang and S. Zhang, Phys. Rev. Lett. 104,

116402 (2010).
[7] H. Shi and S. Zhang, Physical Review B 88, 125132

(2013).
[8] W. Purwanto, H. Krakauer, and S. Zhang, Phys.

Rev. B 80, 214116 (2009).
[9] F. Ma, S. Zhang, and H. Krakauer, New J. Phys.

15, 093017 (2013).
[10] W. Purwanto, H. Krakauer, Y. Virgus, and

S. Zhang, J. Chem. Phys. 135, 164105 (2011).
[11] R. M. Martin, Electronic Structure: Basic theory

and practical methods (Cambridge University Press,
Cambridge, UK, 2004).

[12] X. Gonze, B. Amadon, P.-M. Anglade, J.-M.
Beuken, F. Bottin, P. Boulanger, F. Bruneval,
D. Caliste, R. Caracas, M. Ct, T. Deutsch, L. Gen-
ovese, P. Ghosez, M. Giantomassi, S. Goedecker,
D. Hamann, P. Hermet, F. Jollet, G. Jomard,
S. Leroux, M. Mancini, S. Mazevet, M. Oliveira,
G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese,
D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete,
G. Zerah, and J. Zwanziger, Computer Physics
Communications 180, 2582 (2009).

[13] M. Valiev, E. Bylaska, N. Govind, K. Kowalski,
T. Straatsma, H. V. Dam, D. Wang, J. Nieplocha,
E. Apra, T. Windus, and W. de Jong, Computer
Physics Communications 181, 1477 (2010).

[14] M. H. Kalos, D. Levesque, and L. Verlet, Phys. Rev.
A 9, 2178 (1974).

[15] D. M. Ceperley and M. H. Kalos, in Monte Carlo
Methods in Statistical Physics, edited by K. Binder
(Springer-Verlag, Heidelberg, 1979) Chap. 4, pp.
145–194.

[16] H. Shi, C. A. Jimenez-Hoyos, R. Rodriguez-
Guzman, G. E. Scuseria, and S. Zhang, Phys. Rev.
B 89, 125129 (2014).

[17] D. R. Hamann and S. B. Fahy, Phys. Rev. B 41,
11352 (1990).

[18] S. Zhang, Phys. Rev. Lett. 83, 2777 (1999).
[19] B. M. Rubenstein, S. Zhang, and D. R. Reichman,

Phys. Rev. A 86, 053606 (2012).
[20] J. E. Hirsch, Phys. Rev. B 31, 4403 (1985).
[21] C. J. Umrigar, M. P. Nightingale, and K. J. Runge,

J. Chem. Phys. 99, 2865 (1993).
[22] W. Purwanto and S. Zhang, Phys. Rev. E 70,

056702 (2004).
[23] S. Zhang and M. H. Kalos, Phys. Rev. Lett. 67, 3074

(1991).
[24] S. Zhang, Computer Physics Communications 127,

150 (2000).
[25] C. Lin, F. H. Zong, and D. M. Ceperley, Phys. Rev.

E 64, 016702 (2001).
[26] J. Xu, C.-C. Chang, E. J. Walter, and S. Zhang,

Journal of Physics: Condensed Matter 23, 505601
(2011).

[27] W. Purwanto, S. Zhang, and H. Krakauer, The
Journal of Chemical Physics 130, 094107 (2009).

[28] S. Sorella, Phys. Rev. B 84, 241110 (2011).
[29] J. Carlson, S. Gandolfi, K. E. Schmidt, and

S. Zhang, Phys. Rev. A 84, 061602 (2011).
[30] M. Calandra Buonaura and S. Sorella, Phys. Rev.

B 57, 11446 (1998).
[31] S. Zhang, J. Carlson, and J. E. Gubernatis, Phys.

Rev. Lett. 74, 3652 (1995).
[32] K. P. Esler, J. Kim, D. M. Ceperley, W. Purwanto,

E. J. Walter, H. Krakauer, S. Zhang, P. R. C. Kent,
R. G. Hennig, C. Umrigar, M. Bajdich, J. Kolorenc,
L. Mitas, and A. Srinivasan, Journal of Physics:
Conference Series 125, 012057 (15pp) (2008).

18

http://www.cond-mat.de/events/correl13
http://www.cond-mat.de/events/correl13
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://dx.doi.org/10.1103/PhysRevB.78.165101
http://dx.doi.org/10.1103/PhysRevLett.90.136401
http://dx.doi.org/10.1103/PhysRevLett.90.136401
http://dx.doi.org/10.1063/1.2200885
http://dx.doi.org/10.1063/1.2200885
http://dx.doi.org/10.1103/PhysRevLett.104.116402
http://dx.doi.org/10.1103/PhysRevLett.104.116402
http://dx.doi.org/10.1103/PhysRevB.80.214116
http://dx.doi.org/10.1103/PhysRevB.80.214116
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2009.07.007
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/ http://dx.doi.org/10.1016/j.cpc.2010.04.018
http://dx.doi.org/10.1103/PhysRevB.89.125129
http://dx.doi.org/10.1103/PhysRevB.89.125129
http://dx.doi.org/10.1103/PhysRevB.41.11352
http://dx.doi.org/10.1103/PhysRevB.41.11352
http://dx.doi.org/http://dx.doi.org/10.1103/PhysRevA.86.053606
http://dx.doi.org/10.1103/PhysRevE.70.056702
http://dx.doi.org/10.1103/PhysRevE.70.056702
http://dx.doi.org/http://dx.doi.org/10.1016/S0010-4655(00)00029-1
http://dx.doi.org/http://dx.doi.org/10.1016/S0010-4655(00)00029-1
http://dx.doi.org/10.1103/PhysRevE.64.016702
http://dx.doi.org/10.1103/PhysRevE.64.016702
http://stacks.iop.org/0953-8984/23/i=50/a=505601
http://stacks.iop.org/0953-8984/23/i=50/a=505601
http://dx.doi.org/10.1063/1.3077920
http://dx.doi.org/10.1063/1.3077920
http://dx.doi.org/10.1103/PhysRevB.84.241110
http://dx.doi.org/10.1103/PhysRevA.84.061602
http://dx.doi.org/10.1103/PhysRevB.57.11446
http://dx.doi.org/10.1103/PhysRevB.57.11446
http://stacks.iop.org/1742-6596/125/012057
http://stacks.iop.org/1742-6596/125/012057


[33] E. H. Lieb and F. Y. Wu, Physical Review Letters
20, 1445 (1968).

[34] F. Haldane, Physics Letters A 93, 464 (1983).
[35] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).

19

http://dx.doi.org/http://dx.doi.org/10.1016/0375-9601(83)90631-X

	CPMC-Lab: A Matlab Package for  Constrained Path Monte Carlo Calculations
	Abstract
	I Introduction
	II Method and Notation
	II.1 Slater determinant space
	II.2 The Hubbard Hamiltonian
	II.3 Ground-state projection
	II.3.1 The Hubbard-Stratonovich transformation
	II.3.2 A toy model for illustration

	II.4 Random walk in Slater determinant space
	II.5 Importance sampling
	II.6 The sign problem and the constrained path approximation
	II.6.1 The sign problem
	II.6.2 Twist boundary condition and the phase problem
	II.6.3 Systematic error from the constrained-path approximation, and its reduction and removal

	II.7 Energy measurement
	II.8 Other implementation issues
	II.8.1 Population control
	II.8.2 Re-orthonormalization


	III Algorithm
	IV Package Overview and Instructions
	IV.1 Files in the package
	IV.2 Exercises
	IV.2.1 Running the sample script sample.m
	IV.2.2 Controlling the basic run parameters
	IV.2.3 Calculating E_K and E_V separately
	IV.2.4 The Hydrogen molecule
	IV.2.5 Ground-state energy of a chain
	IV.2.6 Addition to the program: other correlation functions


	V Computational Speed
	VI Illustrative Results
	VII Summary
	VIII Acknowledgment
	A Some useful Matlab commands
	 References


